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EXECUTIVE SUMMARY  
 

In North Carolina (NC) coastal waters, submerged aquatic vegetation (SAV) consists of a 

diverse group of vascular plants that live in subtidal and intertidal waters in both high-and low-

salinity environments.  SAV is widely recognized for many important ecological functions, such 

as critical habitat for recreationally important species of fish, shellfish and invertebrates, and for 

providing a wide range of ecological and economic services to human populations.  The 

importance of protecting and restoring these functions in NC are acknowledged within high-

profile strategic plans such as the Coastal Habitat Protection Plan (CHPP) and the Albemarle-

Pamlico National Estuary Programôs Comprehensive Conservation Management Plan (CCMP). 

 

Despite the need for regular SAV assessments to support adaptive management of a vital 

resource covering over 56,000 hectares (138,000 acres), where losses are not easily reversed and 

restoration is expensive and uncertain, there are no long-term SAV monitoring programs 

established in NC that can provide reliable quantitative data on its status and trends. 

Furthermore, the extensive size of the NC coastal ecosystem along with its multi-dimensional 

bio-physical complexity and the uncertainties of remote sensing have made it very difficult to 

implement a comprehensive coast-wide SAV monitoring program.  In response to this 

deficiency, this report summarizes the results of a two-year project funded by the NC Coastal 

Recreational Fishing License (CRFL) Program to investigate the development of SAV 

monitoring protocols and recommendations for implementation of such a program.   

 

Taking into consideration the large size, multi-dimensional complexity and prior 

experience in the NC estuarine system, we evaluated approaches to monitoring that incorporate 

multiple methods and scales.  Based on a review of the methods used in other programs, we 

examined the potential application of two non-destructive boat-based methods in combination 

with aerial remote sensing.  Hence, the specific project objectives were to: 1)  determine the 

feasibility of developing monitoring protocols with a performance measure capable of detecting 

at least a 10% inter-annual change in SAV abundance, 2)  evaluate a point-intercept visual 

census technique using a low-light underwater video camera deployed from a small vessel, 3)  

evaluate a boat-based hydroacoustic technique using the BioSonics 420 kHz single beam 

SONAR system with EcoSAV2 software deployed from a small vessel, 4)  evaluate the 

capabilities of remote sensing SAV using aerial imagery, and 5)  develop recommendations for 

implementing a state-wide monitoring program incorporating the best available methods. 

 

Two types of study sites were established to evaluate underwater video and SONAR 

methods.  ñIntensive assessmentò sites measuring approximately 0.09 km
2
 involved more 

intensive data collection at a site and comprehensive testing of underwater video and SONAR 

techniques.  More intensive data collection was necessary to test the feasibility of developing a 
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monitoring program capable of detecting subtle intra- and inter-annual change in SAV 

abundance.  The primary objective of ñrapid assessmentò sites, running along a 10-km transect at 

the 1 m depth contour, was to explore a new technique to rapidly survey and map areas of low 

salinity by identifying SAV presence/absence.  This method targeted only low-salinity areas 

because SAV classification based on aerial imagery in this environment has been unreliable and 

thus SAV distribution and abundance is largely undefined.  Four intensive study sites were 

selected for the evaluation of our boat-based methods and protocols, two were in high-salinity 

environments (Newport River and Jarrett Bay) and two were in low-salinity environments 

(Blounts Bay and Sandy Point).  Nine rapid assessment study sites were selected that represent 

SAV beds in low-salinity environments. 

 

SAV beds were photo-interpreted (digitized) into two classes (continuous and sparse 

beds) with minimum mapping units of 0.03 ha, based on aerial imagery for coastal NC that was 

collected over a two-year period prior to this investigation yet specifically acquired to detect 

SAV.   

 

Based on the need for a solution to a very challenging sampling problem with limited 

financial and infrastructure resources, our evaluation of the three monitoring tools suggested the 

use of a combination of methods in a phased approach organized by geographical stratification 

and implemented in a rotational sampling scheme.  Based on SAV community composition and 

distinctive physical attributes, we propose that the NC coastal ecosystem be stratified into two 

large zones: high salinity and low salinity, then each stratified further by basin-scale areas.  

However, differences in watershed and estuarine characteristics among the strata, as well as 

potential differences in SAV communities and stressors, warrant more detailed consideration of 

these further subdivisions.  Stratification based on measureable and meaningful characteristics 

has another important benefit by reducing the size of the monitoring area.  Reducing the size of 

the monitoring areas to smaller and more discrete manageable units will facilitate prioritization 

of actions, program development, and implementation of monitoring plans.  

 

We recommend that sampling be conducted in phases beginning with the immediate 

planning and implementation of a remote sensing acquisition of SAV coverage in the barrier 

island shelf and lagoon stratum.  Concurrent with the remote sensing effort, we recommend 

initiating a second phase of the program whereby sentinel sites are established in a designated 

high-priority stratum in the low-salinity zone.  Once the sentinel sites are selected in the high 

priority stratum, a boat-based pilot monitoring project should be initiated using the best available 

monitoring methods.   

 

In concert with these initial phases of aerial and sentinel site monitoring, we propose two 

activities to help refine the monitoring protocol.  Through a proof-of-concept scenario, we 

recommend development of the combined SONAR and underwater video camera method and, 
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where necessary, snorkel and diver quadrat surveys.  We also suggest a design for SAV acoustic 

reconnaissance surveys for low salinity areas, thereby gaining knowledge about the extent of 

SAV that is hidden from aerial surveys. 
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INTRODUCTION AND OBJECTIVES  
 

In North Carolina (NC) coastal waters, submerged aquatic vegetation (SAV) consists of a 

diverse group of vascular plants that live in subtidal and intertidal waters in both high-and low-

salinity environments (Thayer et al. 1984, Ferguson and Wood 1994, Mallin et al. 2000, Deaton 

et al. 2010).  SAV are recognized worldwide for many important ecological functions such as 

critical habitat for recreationally important species of fish, shellfish, invertebrates and wildlife, 

and providing a wide range of economic services to human populations conservatively estimated 

to be valued at $12K per acre (Larkum et al. 2006).  These functions are acknowledged in the 

NC Coastal Habitat Protection Plan (CHPP; Street et al. 2005, Deaton et al. 2010), prompting 

scientists, managers and the public to elevate their interest in closely monitoring the status and 

trends of SAV resources (Orth et al. 2006a).  A recent assessment of monitoring programs 

worldwide revealed a global decline in seagrass abundance (Waycott et al. 2009).  This 

assessment should be a concern for resource managers in NC, since there is evidence of marine 

SAV (seagrass) declines in other locations nearby in the mid-Atlantic region of the United States 

(US) and farther north in New England (Waycott et al. 2009, Orth et al. 2010; Costello and 

Kenworthy 2011).  If SAV is changing (declining or increasing) in NC it is indeterminable at this 

time.  There are no long-term SAV monitoring programs established in NC that can provide 

reliable quantitative data on the status and trends of the resource.    

 

A further concern should be the recognition that SAV losses are not easily reversed and 

restoration is expensive and uncertain (Fonseca et al. 1998; Kenworthy et al. 2006).  The 

development of a comprehensive long-term monitoring plan which assesses the status and trends 

of SAV resources and the stressors affecting them can be a valuable approach to minimizing and 

avoiding catastrophic losses or the need for restoration.  Since SAV is a responsive bio-indicator 

of environmental change (Dennison et al. 1993, Biber et al. 2004), monitoring this resource can 

be used as a practical tool for early detection of environmental disturbance and anthropogenic 

impacts to coastal ecosystems in general.    

 

In NC, SAV occurs in the second largest estuarine ecosystem in the continental United 

States.  The greater proportion of this system, known historically as the Albemarle Pamlico 

Estuarine System (APES), is made up of a series of shallow sounds and inland waters that 

physically resemble large coastal lagoons with both high and low salinity regions (Figure 1).  

The largest inter-connected system ranges from Currituck Sound, near the border of NC and 

Virginia (VA), south to Bogue Sound and the White Oak River in Carteret County including 

Albemarle, Pamlico, Core, Back, and Bogue Sounds.  Extending further south from the White 

Oak River, the inland waters down to Cape Fear consist of much narrower and smaller estuaries, 

lagoons, and regularly flooded tidal creeks inter-mixed with salt marshes.  Nearly all of these  
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Figure 1.  Submerged Aquatic Vegetation (SAV) salinity zones in North Carolina.  Salinity 

zones were delineated based on principal SAV species present as noted in CHPP (Street et al. 

2005, Deaton et al. 2010).  Water body and landmark abbreviations: AS, Albemarle Sound; PS, 

Pamlico Sound; CH, Cape Hatteras; OI, Ocracoke Inlet; CL, Cape Lookout; CF, Cape Fear. 

 

 

estuarine ecosystems are bordered on their eastern margins by barrier islands which protect the 

inland waters and SAV from the direct physical forces of the Atlantic and enable the 

development of shallow shelves and sounds leeward of the islands.  Numerous inlets that pass 

through the barrier islands maintain regular tidal communication between the open Atlantic and 

the inland waters.  This regular tidal exchange flushes the barrier shelves and sounds, diminishes 

water residence times, and maintains suitable water quality for SAV and other benthic primary 

producers to thrive in shallow water (< 2-3 m; Thayer et al. 1984, Wells and Kim 1989, Mallin et 

al. 2000, Street et al. 2005, Deaton et al. 2010).  Largely for these reasons, the most extensive 

and well-documented SAV communities occur on the shallow shelves leeward of the barrier 

islands in the eastern margins of Pamlico, Core, Back, and Bogue Sounds (Figure 2, Carraway 

and Priddy, 1983, Ferguson and Wood 1994, Street et al. 2005, Deaton et al. 2010).  The spatial 

distribution of SAV in these habitats is not always continuous.  Distribution ranges from large 

meadows with nearly complete cover, to meadows with different degrees of patchiness and 

density (Figure 3).  In this high-salinity zone, SAV communities are dominated by two marine  
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Figure 2.  Map of submerged aquatic vegetation (SAV) in North Carolina.  Dense SAV (>70% 

cover) is noted in red, patchy SAV is identified in yellow.  This map was published in 2011 by 

the Albemarle-Pamlico National Estuary Program (APNEP).  Water body abbreviations: Bogue 

Sound = BS, Bogue Sound; BkS = Back Sound. 
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seagrasses, Zostera marina and Halodule wrightii, with a third species (Ruppia maritima) 

intermixed with the other two.  This third species is more tolerant of a wider salinity range than 

the other two marine seagrasses (Figure 4).  

 

 
Figure 3.  Three seagrass distribution archetypes common to high-salinity environments of NC. 

These are images taken from: A. Shoreline fringing bed with continuous and patchy SAV cover 

in Bogue Sound, B. Patchy bed in Core Sound, C. Continuous bed in Core Sound interspersed 

with unvegetated blowouts 

 
Figure 4.  SAV species found in the high salinity environments of coastal North Carolina.  

Photos by P. Prado. 
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The marine SAV in the high salinity areas of NC is a unique community of species 

(Figure 4).  Zostera marina is distributed throughout temperate regions globally and living at its 

southern range limit in NC.  H. wrightii has a predominantly tropical distribution in the western 

hemisphere and is at itsô northern range limit in NC.  Ruppia maritima is a cosmopolitan species 

found in both temperate and tropical environments and frequently occurs with the other two 

species (Thayer et al. 1984, Street et al. 2005, Short et al. 2007, Deaton et al. 2010).  Depending 

on species composition, intra- and inter-annual coverage in the meadows can vary substantially.  

Cooler water temperatures in the fall, winter and spring favor Z. marina, while the warmer 

summer and early fall temperatures favor H. wrightii.  Mixed communities of these species 

display bi-modal peaks in seasonal abundances so that the optimal times for detecting and 

monitoring these species (index periods) are different (Figure 5).   

The distribution of these species is made even more complicated by the sexual 

reproductive strategy of Z. marina.  Although each of the three species have perennial life 

history strategies,  Z. marina reproduces prolifically by sexual reproduction and seed dispersal 

(Thayer et al. 1984, Jarvis et al., 2012), which leads to widespread distribution of annual 

meadows formed exclusively by seed.  During summer periods of high temperature stress in 

shallow water, these annual meadows of Z. marina senesce and can completely disappear, so 

there is either minimal or no evidence of their distribution in mid- to late summer (Figure 5).  In 

the following fall and early winter, Z. marina beds recover by seed, grow and expand rapidly by 

vegetative reproduction in spring, forming either patchily distributed or continuous meadows 

depending on reproductive success and the dispersal of seeds (Jarvis et al. 2012).  H. wrightii is 

primarily a tropical seagrass, but does not reproduce sexually in NC and depends exclusively on 

asexual reproduction for growth, meadow maintenance and dispersal.  This species thrives in the 

warmer season between late May and October and senesces in fall and winter when there is a 

significantly diminished abundance (Figure 5).  Ruppia maritima reproduces both sexually and 

asexually, but is more ephemeral than either of the other two marine species and usually is found 

 
Figure 5.  Abundance throughout the year of three seagrass species commonly found in 

high- salinity environments of North Carolina. 
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as a sub-dominant component of the SAV bed in marine communities.  Ruppia maritima 

abundance increases at locations more distant from the inlets, in the lower salinity environments 

of northern Pamlico Sound, and in Albemarle and Currituck Sounds (Ferguson and Wood 1994).   

Environmental conditions and SAV communities in the rest of the NC coastal system are 

distinctly different from those which occur on the barrier shelves of Pamlico Sound and in Core, 

Back and Bogue Sounds (Street et al. 2005, Deaton et al. 2010, Figure 6).  The western boundary 

of the estuarine system is bordered by a gradually sloping coastal plain with many large 

watersheds and numerous rivers that regularly deliver freshwater, colored dissolved organic 

matter and sediments to the coastal water bodies (Stanley 1992, 1993, Cooper 2000, Mallin et al. 

2000) resulting in salinity decreases and increased turbidity proximal to the rivers (Figure 1). 

 
Figure 6.  SAV species found in the low salinity environments of coastal North Carolina. 
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Longer term fluctuations in climate, precipitation and river discharges leads to significant water 

quality gradients and both intra-and inter-annual fluctuations in environmental conditions, 

especially salinity and turbidity (Burkholder et al. 2004).   

The limited amount of observation and monitoring data in these lower salinity SAV 

communities suggests that the abundance of SAV is poorly documented, the species are more 

ephemeral, and there is much greater spatial and temporal variation than the persistent seagrass 

meadows in the higher salinity barrier shelves and sounds.  Here, there are no marine seagrasses, 

and SAV communities consist of at least ten different species with a diversity of complex 

morphologies and life history strategies adapted to lower salinities and more ephemeral and 

widely fluctuating environmental conditions (Figure 6).  These SAV communities include Najas 

guadalupensis (bushy pondweed), Vallisneria americana (wild celery), Potamogeton crispus 

(curly-leaf pondweed), Potamogeton perfolatus (redhead grass), Stuckenia pectinata (sago 

pondweed), Zanichellia palustris (horned pondweed), Ceratophyllum demersum (coontail), and 

non-native species Myriophyllum spicatum (Eurasian watermilfoil) and Hydrilla verticillata 

(hydrilla).  Ruppia maritima is also commonly found in the low salinity zone. 

 

The lack of quantitative and sustained monitoring data for the low salinity regions of NC 

has made it difficult to describe and understand their distribution and seasonal growth cycles.  

This deficiency has also limited our ability to compile a comprehensive state-wide estimate of 

SAV status and trends.  However, based on historical information from a wide variety of sources, 

there is evidence suggesting a widespread distribution of SAV in the western regions of the 

sounds and in the lower salinity environments of the river systems in NC (Brinson and Davis 

1976, Davis and Brinson 1983, Street et al. 2005, Deaton et al. 2010, Quible and Associates 

2011).   

 

The first state-wide aerial survey of SAV coverage during 2006-2008 indicated NC has 

136,000 acres of SAV (Figure 2, http://portal.ncdenr.org/web/apnep), placing it third in aerial 

abundance behind Florida and Texas.  As in past efforts to map SAV in NC with remote sensing 

and interpretation of digital imagery (e.g. Carraway and Priddy 1983, Ferguson and Wood 1994), 

this more recent estimate included interpretation of higher quality imagery from the barrier 

shelves and sounds and much lower quality imagery in the river systems and western sound 

regions.  Interpretation of this imagery re-affirmed that the largest proportion of SAV detectable 

using aerial imagery occurs on the barrier shelf of Pamlico Sound, and in Core, Back and Bogue 

Sounds.  In the rest of the state, aerial coverage of SAV was underestimated because a portion of 

the imagery was either not interpretable or water quality made it difficult to reliably detect 

benthic signatures, especially those occurring in deeper water.  Thus, NC likely has substantially 

more than 136,000 acres of SAV; however, the total amount of SAV and where it occurs will 

remain unknown, as well as its status and trends, until mapping and monitoring of the undetected 

(invisible) portion of the resource can be accomplished.  

 

http://portal.ncdenr.org/web/apnep
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The extensive size of the NC coastal ecosystem, along with its multi-dimensional bio-

physical complexity and the uncertainties of remote sensing, have made it very difficult to 

implement a comprehensive state-wide SAV monitoring program.  Despite this, the NC Division 

of Marine Fisheries (NCDMF), along with other state and federal agencies, academic 

institutions, and non-government organizations continue to recognize the economic and aesthetic 

value of SAV communities (see summary in CHPP and APNEP Comprehensive Conservation  

Management Plan).  This recognition is consistent with the regional, national and global 

consensus among scientists and managers that acknowledges the need to monitor the status and 

trends of SAV resources (McKenzie et al. 2000, Orth et al. 2006a, Waycott et al. 2009, 

http://www.seagrasswatch.org/publications.html, http://www.seagrassnet.org/).  A recent global 

analysis of site and basin specific SAV monitoring surveys indicated the prevalence of seagrass 

declines worldwide and the acceleration of declines during the three most recent decades 

(Waycott et al. 2009).  These analyses included recognition of losses proximal to NC in the mid-

Atlantic region of Virginia (Orth and Moore 1983, Orth et al. 2010, Williams et al. 2010) and 

New Jersey (Lathrup et al. 2001), and further north in Massachusetts (Costello and Kenworthy 

2011).  Evidence of declines in these other western Atlantic populations, which include 

seagrasses and lower salinity SAV species that also occur in NC, signaled an urgent need for NC 

to consider developing and implementing an SAV monitoring program.  Hence, funding made 

available by the Coastal Recreational Fishing License Program (CRFL) provided an opportunity 

to initiate consideration for developing a state-wide monitoring program.  This report 

summarizes the results of a two-year project funded by CRFL investigating the development of 

SAV monitoring protocols and recommendations for implementation of a state-wide SAV 

monitoring program.   

 

Review of SAV Monitoring Programs 
 

Environmental monitoring is the repeated observation or measurement of some 

quantitative metric to assess the status and trends of biological (e.g., density) and/or physical 

(e.g., salinity) parameters, a specific organism (SAV species), or the habitat (area covered) of a 

system (Lathrup et al. 2001).  With recent advances in geospatial technology (e.g., GPS) and 

Geographic Information Systems (GIS), we are now able to spatially articulate monitoring data 

to create status and trends maps of these environmental metrics and habitats.  Often, monitoring 

programs are designed with the intent to detect change in space and time using one or several 

metrics and a distribution map of SAV habitat as indicators of change.  Ideally, the most useful 

monitoring programs are capable of identifying the causes of change so that responsible parties 

and their agencies can make more confident decisions resulting in effective management and 

protection of natural resources. 

 

Despite a wide consensus recognizing the need for SAV monitoring (Waycott et al. 

2009), science has not yet provided resource managers with a standardized approach or a strict 

http://www.seagrasswatch.org/publications.html
http://www.seagrassnet.org/
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set of protocols for SAV change detection, especially in areas that are prone to turbid waters.  

Considering the wide range of environments where SAV occur and the different goals and 

strategies of resource management agencies, standardization of protocols may not be the best 

approach.  Nonetheless, there are fundamental principles which can be considered and used as a 

guide for management agencies to select the most appropriate and cost effective approaches that 

fit their particular system.  Lessons learned from an evaluation of existing monitoring programs 

worldwide and here in the U.S. illustrate the range of options available.  Assessment of some of 

these examples below provides the context within which resource managers can evaluate the 

options best suited for the conditions in North Carolina. 

Global Programs 

 

The first principle that should be considered in designing a monitoring program is 

establishing the goals and associated objectives.  The specific objectives of a monitoring 

program should guide the selection of metrics and sampling protocols.  If the data and outcomes 

derived from the protocols do not match the objectives, then the monitoring program will fail to 

achieve its intent.  Globally, monitoring programs have been driven by a wide range of 

objectives.  For example, in one of the first attempts at global-scale monitoring, the Seagrass Net 

Program (http://www.seagrassnet.org/) was originally designed to foster more widespread 

awareness and scientific knowledge of seagrasses by public and government organizations, 

specifically including those located in remote, underdeveloped nations.  Program and data 

management is centrally located in the U.S. while program staff conducts training workshops 

and supervises local community and agency involvement in monitoring.  Monitoring plans are 

simple and site-specific, but involve a standard transect sampling design that allows analyses of 

long-term trends and comparisons between sites (Short et al. 2006).  

 

Likewise, the Seagrass Watch Program was originated in northeastern Australia and 

designed with objectives comparable to Seagrass Net, but the sampling methods were modified 

and adapted to the bio-geographic conditions of the Indo-Pacific region 

(http://www.seagrasswatch.org).  Both the Seagrass Net and Seagrass Watch programs continue 

to grow and expand into more regions of the globe, educating the wider international 

communities, raising awareness of coastal management issues, and building local and global 

capacities through long-term monitoring programs that support conservation of SAV resources.  

In addition to the information and reports available through their websites, these two monitoring 

programs have contributed to publishing a world seagrass atlas (Green and Short, 2003), a 

seagrass research methods textbook (Short and Coles 2001) and a seagrass monitoring manual 

(Short et al. 2006).  Three important lessons learned from these global SAV monitoring 

programs were:  

 

1) larger scale monitoring programs can be achieved by incremental steps with 

consideration of local needs,  

http://www.seagrassnet.org/
http://www.seagrasswatch.org/
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2) protocols must be flexible so they can be modified to fit environmental conditions, and 

3) building capacity through partnerships is very important for sustaining funding and 

implementing larger scale long-term monitoring programs. 

Site-Specific Programs 

 

There are several site-specific and basin-focused SAV monitoring programs in Florida 

and three state-wide programs centered in Virginia, Massachusetts, and Washington that are 

large enough to provide meaningful information for evaluation on the scale comparable to the 

NC coastal system (Table 1).  Collectively, these programs have comparable goals, focusing on 

the management and conservation of SAV resources.  They have sufficient longevity, exceeding 

at least 10 years, and demonstrate the use of several different approaches and sampling methods.  

Only the Washington state program incorporates performance based probabilistic sampling 

which evaluates a specific level of change in SAV using sampling and statistical protocols that 

quantify the accuracy, uncertainty and power of their change detection method.  

 

The first two example programs rely primarily on polygon-based interpretation of aerial 

imagery to map and monitor the status and trends of SAV.  These programs are: 1) a 

Massachusetts state-funded program 

(http://maps.massgis.state.ma.us/images/dep/eelgrass/eelgrass_map.htm), and 2) a multi-state 

program located in the Chesapeake Bay, and the coastal bays of Virginia and Maryland 

(http://web.vims.edu/bio/sav/index.html).  In Massachusetts, aerial imagery for detecting SAV is 

collected and interpreted in portions of the state on a staggered schedule so that that entire SAV 

resource is assessed over a period of approximately five to ten years (Costello and Kenworthy 

2011).  The Chesapeake Bay program has a higher sampling frequency for acquiring imagery 

than in Massachusetts; aerial monitoring is conducted and reported annually.  This program is 

run primarily through one state academic institution, the Virginia Institute of Marine Science 

(VIMS), but the imagery data is supplemented by extensive coordination between regional 

partners at local, state and federal institutions in Virginia, Maryland and Delaware.  These other 

institutions provide additional capacity to examine the effects of stressors (e.g., temperature, 

water quality) on the long-term status and trends of SAV by providing information obtained from 

extensive in-water
1
 sampling of physical and biological parameters at separately funded research 

monitoring sites and from other bay-wide survey programs (Orth et al. 2006b, Williams et al 

2010, Orth et al. 2010). 

 

There is no official comprehensive state-wide SAV monitoring program in Florida, but 

there is an effort by the Florida Fish and Wildlife Conservation Commission (FWCC) to acquire 

and compile aerial imagery from all available sources to map SAV resources and to develop 

statistical tools for a statewide integrated monitoring network (SIMM)  

                                                 
1
 For this report, in-water sampling refers to snorkeling, SCUBA diving or wading. 

http://maps.massgis.state.ma.us/images/dep/eelgrass/eelgrass_map.htm
http://web.vims.edu/bio/sav/index.html


14 

 

Table 1.  General characteristics of representative large scale SAV monitoring programs.  Shown are three international programs and 

six from the United States.  Characteristics include the approximate area of the water body where the monitoring occurs (km
2
), 

longevity of the monitoring program, and sampling frequency.  Also shown are the different sampling designs and approaches used in 

each program indicated by either yes or no.  NA = not applicable.  ND = not determined.  
*
In the Indian River Lagoon fixed transects 

are sampled every six months and aerial remote sensing is planned for every two years. 
 # 

Performance-based monitoring program. 

 

Location Relative 

Size 

(km
2
) 

Longevity 

(yr ) 

 Sampling 

Frequency 

Sampling Design and Approaches Used 

    Probabilistic Synoptic Remote 

Sensing 

In-

Water 

Fixed 

Transects 

International          

Seagrass Watch NA 15 Annual No No No Yes Yes 

Seagrass Net NA 15 Quarterly No No No Yes Yes 

Bermuda Platform 370 6 Annual Yes Yes No Yes Yes 

United States         

Chesapeake Bay 11,000  25 Annual No No Yes No No 

Massachusetts ND 14 5 yr ï 10 yr No No Yes No No 

Indian River Lagoon, FL* 400 17 / 24 6 m / 2 yr
*  

No No Yes Yes Yes 

Florida Bay, FL 2,000 16 Annual Yes Yes No Yes Yes 

Florida Keys (FKNMS) 8,000 15 Annual Yes Yes No Yes Yes 

Puget Sound, WA
# 

2,600 11 Annual Yes No No No No 
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(http://myfwc.com/research/habitat/seagrasses/publications/simm-report-1/).  Three large scale 

long-term monitoring programs established in Floridaôs coastal waters make significant 

contributions to this integrated monitoring network, but state-wide coverage is incomplete.   

 

In the Indian River Lagoon, Florida SAV monitoring is conducted primarily by one state 

agency, the St. Johnôs River Water Management District (SJRWMD).  This program uses a 

combination of aerial photography obtained approximately every two years and in-water 

sampling of fixed transects (sentinel sites) sampled twice annually (Morris et al. 2001, Steward 

et al. 2006).  A second Florida program, located further south in the Florida Keys National 

Marine Sanctuary (FKNMS), monitors seagrass annually using a probabilistic-based synoptic 

approach with in-water point sampling and fixed transects located at a subset of sentinel sites 

(Fourqurean et al. 2001).  This program is managed and run through Florida International 

University (FIU) and funded primarily by the U.S. Environmental Protection Agency (USEPA).  

A third program in Florida Bay also samples annually using a probabilistic-based synoptic 

design with in-water point sampling (Hall et al. 1999, Durako et al. 2002).  This program also 

recently added fixed transects at pre-determined sentinel sites.  Monitoring in Florida Bay is 

primarily funded by two state agencies, the South Florida Water Management District and the 

FWCC.  Implementation of the program is shared by matching support from the Florida Fish and 

Wildlife Research Institute and the University of North Carolina, Wilmington, NC.  

 

Data on SAV distribution and abundance acquired in both the Florida Bay and FKNMS 

sampling programs rely almost exclusively on information collected in the water, using either 

SCUBA divers or snorkelers (Durako et al. 2002, Fourqurean et al. 2002).  Data are acquired by 

accepted peer-reviewed scientific methods and include non-destructive standardized visual 

assessments of species composition, cover and abundance in quadrats, as well as supplemental 

destructive sampling of shoot density and biomass using standard sized cores.  The sentinel sites 

also incorporate measurements of seagrass primary productivity measured by leaf marking 

techniques in situ.  This in-water field-based sampling of plant condition metrics and 

environmental variables involves processing a large volume of samples collected over broadly-

distributed sampling sites and secures a large amount of quantitative data which is used to 

evaluate the status and trends of the resource (Fourqurean et al. 2001).  Both of these programs 

are closely associated with other environmental monitoring and water quality sampling programs 

so that the seagrass monitoring data can be interpreted within the context of factors affecting 

their status and trends (Fourqurean et al. 2003).  The in-water methods, however, are labor-

intensive and require highly trained personnel and specialized technical equipment (e.g., diving 

gear and safety equipment).  The inclusion of quantitative, non-destructive visual assessments 

minimizes the cost of data acquisition, but this can be offset by the additional costs of processing 

the highly informative destructive sampling with biomass cores and measurements of primary 

productivity. 

 

http://myfwc.com/research/habitat/seagrasses/publications/simm-report-1/
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The Indian River Lagoon monitoring program utilizes long-term sentinel sites with in-

water sampling at fixed in combination with aerial remote sensing to monitor SAV.  In this 

program, landscape scale patterns of change derived from polygon analyses of imagery are 

supplemented by point sampling on transects.  For in-water transect monitoring this program 

relies on non-destructive quadrat sampling for characterizing species composition, measuring 

abundance, and estimating SAV cover.  Seagrasses in the Indian River Lagoon are distributed in 

water depths generally < 2.0 m, so most of the sampling can be done by snorkelers and post-

processing of field data does not require labor-intensive processing of sediment cores.  This 

program is also closely aligned with water quality monitoring programs conducted by SJRWMD, 

making it a powerful tool for conducting SAV change analysis at multiple scales, early detection 

of impending stressor effects, and the development of water management programs for SAV 

protection and conservation (Virnstein 1990, Virnstein 2000, Steward et al. 2005, Steward and 

Green 2007).    

 

Washington is the only state in the US which has a statewide performance-based SAV 

sampling and monitoring program.  Nearly the entire Puget Sound seagrass resource is sampled 

annually by the Department of Natural Resources Submerged Vegetation Monitoring Program 

(SVMP) using an underwater video camera deployed from a large vessel 

(http://www.dnr.wa.gov/ResearchScience/Topics/AquaticHabitats/Pages/aqr_nrsh_eelgrass_mon

itoring.aspx.  Underwater videography was selected as the preferred monitoring method because 

the primary indicator species, Z. marina (eelgrass), grows to depths that exceed the capability of 

detection by aerial remote sensing.  The deeper depths, strong tides and cold temperatures also 

make in-water sampling on a sound-wide scale impractical and prohibitive.  Given the generally 

good visibility and the deep depths in Puget Sound, the underwater video camera can be towed at 

a relatively high speed (3 kts) and still discriminate the presence or absence of seagrass and thus 

is capable of acquiring data over large spatial scales in relatively short periods of time.   

 

Briefly, the overall objective of the SVMP sampling design is to provide statistically-

valid inferences of Puget Sound-wide eelgrass abundance annually (status) and over time 

(trends), as well as changes in eelgrass depth distribution (Berry et al. 2003).  The primary 

programmatic performance measure of SVMP is designed to produce results annually and long-

term (5- and 10-year) with the ability to detect a 20% decline in Z. marina abundance with 

suitable statistical power over 10 years at the sound-wide scale (Gaeckle et al. 2009).  Annually, 

individual polygons in Puget Sound (1000 m long and out to a depth of 10 m) are randomly 

drawn from pre-determined strata (smaller fringing beds, larger flats beds, and focus areas).  In 

each subsequent year, 20% of the polygons are replaced by new polygons in a rotational design 

(Skalski 2003).  The video data is post-processed and classified by laboratory technicians to 

develop estimates of SAV cover and maximum depth distribution within the randomly selected 

polygons.  Replicate video transects (n å 11) randomly selected within each polygon utilize a 

modification of the point intercept method to acquire presence/absence data for SAV in 1 m
2
 

http://www.dnr.wa.gov/ResearchScience/Topics/AquaticHabitats/Pages/aqr_nrsh_eelgrass_monitoring.aspx
http://www.dnr.wa.gov/ResearchScience/Topics/AquaticHabitats/Pages/aqr_nrsh_eelgrass_monitoring.aspx
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areas continuously along each individual transect.  The fractional coverage of SAV within a 

transect is computed and a mean and variance for each polygon are calculated.  Multiple 

polygons randomly selected throughout the Sound are used to make final estimates total amount 

of SAV and the variance of SAV aerial coverage for all of Puget Sound each year, as well as 

changes in maximum depth distribution of Z. marina.  A weighted linear regression analysis is 

used to test for significant slopes to evaluate long-term trends (5 or 10 yr) in SAV abundance for 

the entire Sound (Gaeckle et al. 2009).  

 

Development of the SVMP began in the early- to middle-1990ôs as part of the larger 

Puget Sound Ambient Monitoring Program (PSAMP).  The PSAMP recognized the value of 

SAV and its potential role as an indicator of Puget Sound health.  The larger goal of the PSAMP 

is to correlate environmental trends with stressors and more specifically, to differentiate the 

effects of natural and anthropogenic stressors on SAV.  In the nearly two decades since the 

monitoring program began, the SVMP matured through incremental stages that included: 

evaluating videography methods (Norris et al. 1997), identifying Sound-wide sampling 

replication, stratification requirements, statistical validation of replication and sampling power 

(Berry et al. 2003, Dowty et al. 2005), identification of sentinel sites (core/focus sites) (Berry et 

al. 2003), and implementation of monitoring.  Sound-wide sampling actually began in the 

summer of 2000, and the program staff and associates continue to adjust and modify sampling 

protocols and parameter analyses suggested by past experience and evaluation of each yearôs 

results (Gaeckle et al. 2009).  These modifications have incorporated more multi-parameter 

assessments of SAV change at different scales and illustrate how the monitoring program is 

evolving to more quantitative and sophisticated analyses as more data are collected. 

 

As demonstrated by the Washington state SVMP, boat-based 
2
 videography offers a 

practical and demonstrably successful option for monitoring SAV.  This program's strengths 

include non-destructive methods, with almost no impact on the resource, and rapid underwater 

video acquisition.  The program also benefits from focus on one main indicator organism, Z. 

marina.  In Puget Sound, Z. marina is a perennial species, and there is very little natural 

variability in distribution and abundance during an annual monitoring schedule.  Thus, there are 

no unique requirements for selecting an index monitoring period similar to the problem faced in 

NC.  

 

Another method widely used for monitoring SAV in low-salinity habitats and lakes is 

hydroacoustics or SONAR.  Aquatic plants are known to be acoustically reflective due to the gas 

bubbles they contain and could be detected on SONAR or analog echosounders (Maceina and 

Shireman 1980, Maceina et al. 1984, and Duarte 1987, Miner 1993).  More recently, the echoes 

of Z. marina could be easily discriminated on an echogram from a digital echosounder (Sabol et 

al. 1997, Sabol and Burczynski 1998).  A U.S. patent for the method and apparatus for 

                                                 
2
 For this report, boat-based refers to any monitoring done from a vessel. 
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hydroacoustic detection of SAV was granted soon after these reports (Sabol et al., 1998).  This 

patented method used single-beam SONAR with a 420-kHz transducer.   

 

The SONAR method has been most well examined in freshwater ecosystems beginning 

with the work to monitor aquatic plant growth in inland waterways by the Army Corp of 

Engineers (Sabol and Johnston 2001).  Since then, several studies have been conducted that show 

the usefulness of SONAR for mapping SAV in high-salinity and low-salinity regions of lakes, 

rivers and estuaries.  Entire lakes have been mapped for SAV and change analysis in Lake Biwa, 

Japan, (Hamabata and Kobayashi, 2002), in Minnesota (Valley et al. 2005, Valley and Drake 

2007), and in Wisconsin (Sabol et al. 2009).  In estuaries, SONAR has been used to document 

the presence and map the distribution of SAV (Sabol et al. 2002).  The US Naval Undersea 

Warfare center used single-beam 420 kHz SONAR and several brands of side-scan sonar to 

detect seagrass Z. marina in Narragansett Bay, Rhode Island where underwater mines were the 

primary target (McCarthy and Sabol, 2000).  Studies were done by these authors in tanks to 

discover the target strength of Z. marina, and it was measured at -21 dB re 1 µPa with no change 

in acoustic response between 20-700 kHz
3
.     In their conclusions, these authors wrote, ñThe use 

of hydroacoustic techniques for mapping submerged aquatic vegetation has been demonstrated.ò  

After reviewing these studies, we felt that single-beam SONAR approaches could be used in 

relatively turbid NC rivers and estuaries to detect change in SAV.   

 

These examples from U.S. programs illustrate five general categories of SAV monitoring 

approaches being used: 1) remote sensing, 2) in-water sampling by snorkel and SCUBA, 3) boat-

based videography, 4) boat-based SONAR, and 5) a combination of these approaches.  We 

already know from past experience in NC that remote sensing can be used to quantify a large 

portion of the coastal SAV resource if data acquisition and interpretation are carefully planned 

and supervised by experienced staff.  Remote sensing alone, however, is not capable of detecting 

the entire scope of SAV coverage in NC, particularly in turbid or deeper water environments.  

Therefore, it will be necessary to develop land-or boat-based monitoring protocols to achieve 

comprehensive coverage in a NC monitoring program.  However, shoreline access to submerged 

resources like SAV is not a practical approach over much of the stateôs geographic range.  

Access to a large portion of the resource requires a boat-based operation whether you are 

conducting ground-truthing for remote sensing programs or in-water sampling.  It may be 

possible to minimize in-water sampling efforts using alternative boat-based approaches, such as 

underwater videography or remote sensing with hydroacoustics (SONAR).  

 

                                                 
3
 Target strength is a measure of acoustic reflectivity of an object, with all values being negative, because echoes 

have less acoustic energy than the original ping when detected at the transducer. Target strength is measured in 

decibels (dB) and typically varies between -130 dB and 0 dB in strength relative to a reference level, 1 µPa). 
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Objectives 

 

The overall goals of this project were to; 1) evaluate the development of performance-

based SAV monitoring protocols for NC, and 2) draft recommendations for a long-term 

statewide SAV monitoring plan.  To achieve these goals we evaluated prior experience monitoring 

SAV in the NC estuarine system and reviewed existing national and international SAV 

monitoring programs.   We also considered the logistical challenges posed by the large size and 

multi-dimensional bio-physical complexity of the NC estuarine system and recognized proposed 

evaluate approaches to monitoring that incorporate multiple methods and scales.  Based on a 

review of the methods used in other programs, we examined the potential application of two non-

destructive boat-based methods in combination with aerial remote sensing and in water 

sampling.  Hence, the specific project objectives were to: 

 

1)  determine the feasibility of developing monitoring protocols with a performance measure 

capable of detecting at least a 10% inter-annual change in SAV abundance,  

 

2)  evaluate a point-intercept visual census technique using a low-light underwater video 

camera deployed from a small vessel,    

 

3)  evaluate a boat-based hydroacoustic technique using the BioSonics 420 kHz single beam 

SONAR system with EcoSAV2 software deployed from a small vessel,  

 

4)  evaluate the capabilities of remote sensing SAV using aerial imagery in NC, and  

 

5)  develop recommendations for implementing a state-wide monitoring program 

incorporating the best available methods for a given region. 

 

METHODS 

Study Sites 
 

We established two sets of study sites to evaluate underwater video and SONAR 

methods: 1) Intensive-assessment, and 2) Rapid-assessment sites.  Intensive assessment sites 

involved more intensive data collection at a site and comprehensive testing of underwater video 

and SONAR techniques than rapid assessment sites.  More intensive data collection was 

necessary to test the feasibility of developing a monitoring program capable of detecting small 

(~10%) inter-annual change in SAV abundance.  The primary objective of the rapid assessment 

sites was to explore a new monitoring techniques technique to rapidly survey and map areas in 

low salinity environments by identifying SAV presence/absence.  This method targeted only 
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low-salinity areas because SAV classification based on aerial imagery in this environment had 

been unreliable and thus SAV distribution and abundance largely undefined. 

 

Intensive Assessment Sites 

 

Four intensive study sites were selected for the evaluation of our boat-based methods and 

protocols.  Two of these were in high-salinity environments (Newport River and Jarrett Bay) and 

two were in low-salinity environments (Blounts Bay and Sandy Point; Figure 7;Table 2).   

 

 

 

 

 
Figure 7.  Intensively studied sites in 2009 and 2010 at Sandy Point (SPS), Blounts Bay (BLB), 

Jarrett Bay (JBS), and Newport River (NPR), and their average environmental conditions. 
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Table 2.  Summary of study site types, site names and abbreviations, and salinity levels. 

Site Type Site Name Site 

Abbrev. 

Salinity Level  

Intensive Newport River NPR High-salinity 

Intensive Jarrett Bay JBS High salinity 

Intensive Sandy Point SPS Low salinity 

Intensive Blounts Bay BLB Low salinity 

Rapid Blounts Bay BY Low salinity 

Rapid Batchelor Bay BB Low salinity 

Rapid Fishermans Bay FB Low salinity 

Rapid James Creek JC Low salinity 

Rapid Neuse River NR Low salinity 

Rapid Perquimans River PR Low salinity 

Rapid Ross Creek RC Low salinity 

Rapid Sandy Point SP Low salinity 

Rapid Trent River TR Low salinity 

 

Newport River  

 

This is a high-salinity SAV site located near the mouth of the Newport River (hereafter 

NPR).  Our survey area was defined using historic SAV distribution based on 2006 imagery as a 

guide to ensure that our survey captured both the shallow and deep edges of the SAV 

distribution.  The final NPR sample polygon encompassed 103,600 m
2
.  At NPR, SAV is 

primarily maintained by seed recruitment; however, some perennial clones exist.  During periods 

of peak biomass, NPR is generally characterized as a having a shoreline fringing distribution, 

with regions of dense, continuous cover near shore transitioning to patchy SAV with increasing 

depth and distance from shore.  Dominant species located here were: Z. marina and H. wrightii; 

isolated patches of R. maritima were also found.   

 

Jarrett Bay  

 

Jarrett Bay (hereafter JBS), another high salinity study site, was selected because it 

contains a long history of SAV classification from aerial photography.  This site is dominated by 

Z. marina and H. wrightii, with some R. maritima mixed in the shallow regions.  It is primarily a 

shoreline fringing seagrass bed with nearly all seagrass located in < 1 m of water.  Dense, near 

shore portions of the JBS seagrass bed are largely perennial while further offshore (between 10 ï 

50 m) seagrass is very seasonal and exists via seed recruitment and germination.   
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Sandy Point  

 

Sandy Point (hereafter SPS) is representative of low salinity SAV communities in NC.  

During periods of peak growth in late summer SAV can become very dense and may extend into 

3 m of water or more.  During winter months, most of the species at SPS senesce, losing all or 

most above ground biomass, but remain present (Luczkovich 2005).  The following spring, 

germination of seeds and regrowth from belowground tissues happen rapidly, transitioning this 

site from nearly bare sand to dense, lush SAV.  This site is dominated by P. pectinatus and P. 

perfolatus throughout the summer.  From May through July, N. guadalupensis and S. pectinata 

are prevalent in the system but their presence declines through the summer.  In August, V. 

americana becomes dominant and stays dominant through the month of September.  M. 

spicatum, Z. palustris, and R. maritima are periodically intermixed with the other species at this 

site. 

 

Blounts Bay  

 

Blounts Bay (hereafter BLB) was selected because it is a good representation of the lower 

salinity SAV communities of NC and for its proximity to areas with historic SAV data.  Patchy 

SAV occurs here in < 1 m of water.  This site is dominated by P. pectinatus, P. perfoliatus, and 

N. guadalupensis in May and June, but changes to S. pectinata, R. maritima, Z. palustris, and V. 

americana in late summer.   

 

Rapid Assessment Sites  

 

Nine rapid assessment study sites were selected that represent SAV beds in low-salinity 

environments in NC (Figure 8, Table 2).  These sites were chosen based on historical 

information obtained from the NC Division of Water Quality (Jill Paxton, NCDWQ personal 

communication), NC Division of Marine Fisheries (NCDMF), and the 2011 SAV map produced 

by the Albemarle-Pamlico National Estuary Program (APNEP; Figure 2).  Three of the sites 

(BB, PR, SP) were located in Albemarle Sound, three in the Pamlico River (BY, JC, RC), two in 

the Neuse River (NR, TR), and one in Bay River (FB).  All of these sites are in areas of low 

salinity; the sites in Albemarle Sound have the lowest salinity, and FB has the highest salinity of 

all of rapid assessment sites studied. 
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Figure 8.  Study areas for rapid assessment study sites (low-salinity areas) using shore-parallel 

SONAR surveys paired with systematic drop camera points.   

 










































































































































































































































































